Integration Architecture Work Product for [XYZ Project]
Author: [Author Name]
Date: [Date]
Version: [Version Number]
Filename: Integration Architecture Work Product.Doc
1 Document Control

1.1 Change History

	Version
	Author
	Date
	Change Description

	
	
	
	

1.2 Security Classification

This document is classified as [Unclassified, Internal Use Only, Confidential, etc].

2 Introduction

This document captures the Integration Architecture for [insert project or scope of the component].
[Integration in this framework means moving data between different parts of the solution, usually over a network, often with data transformation requirements. To some people the word ‘interface’ may be a better description than ‘integration’.
The integration architecture work product is a curiosity when compared to the other three primary architecture work products because this work product describes how the integration points will work and considers various aspects of this such as solving non-repudiation and resending scenarios and therefore is a form of requirement rather than a design.
The integration architecture states functions, data and non-functional requirements which ultimately are realised through components, data and infrastructure, rather than integration ‘stuff’.
The integration architecture describes how all the integrations (interfaces) between all the parts of the solution will work and this in turn describes functional requirements for components, data requirements for the integrations, and non functional requirements for the infrastructure architecture.
The integration architecture is more likely to be built where data is moved between different systems, rather than components within the same system. Use cases can also be used as a alternative to this work product as long as all of the aspects of the integration are covered. Sequence diagrams at a system to system level are also useful for illustrating how the systems interact.

Where few integration points exist, or the integrations are simple the integration model may not be required. Where there are many integration points are required, or where the integration is not simplistic it is highly advisable to focus on this area with some industry analysts quoting 50%+ of system costs attributed to integration.

Performance is often a key consideration especially for real time messaging and often even for batch based integration where large file extracts may take time to generate and transmit over a network.]

.

3 Integrations
3.1 Scope

[Describe the scope of the Integration Architecture contained within this document and how it relates to other integration architecture work products.]

]

3.2 Integration Architecture Overview Diagram

[Add an Architecture Overview Diagram of the integration architecture. Each component and interface should be uniquely numbered in the diagram for easy reference through the rest of the document.]

3.3 Integration Point [xxx] – Integration Point Name
	Integration ID
	[A unique reference for each integration (interface) point in the document, for instance 001, 002, etc]

	Integration Name
	[The name of the integration point.]

	Integration Description
	[A description of the integration, what is it for, how are data or functions requested, how is data returned?]

	Initiating Component ID and Name
	[The ID and name of the component which initiates the integration by requesting the integration either dynamically or on a fixed schedule (CRON for example], or a component can initiate the integration itself such as broadcasting data.]

	Destination Component ID and Name
	[The ID and name of the destination. The destination may not be known. Where the destination is known this should match either the initiating component]

	Transport Mechanism
	Describe the base mechanism for transporting the data i.e. FTP, HTTP/HTTPS, MQ, etc.]

	Data Request Format
	[Define the data structure used to request data. Key data elements are likely to be those used for authentication, unique identification, non-repudiation and destination as well as data which tells the receiving component what function to perform and/or data to return]

	Data Payload Format
	[Define the format of the data returned in the interface. Key data elements are likely to be those used for authentication, non-repudiation, the destination and the data itself]

	Encryption
	[If required, define how the payload, or parts of the payload, are encrypted and how the destination may decrypt the data. This s strongly related authorisation since only authorised users should be able to decrypt the payload.]

	Error Conditions
	[Define any error conditions such as timeouts, or error messages returned.]

	Non-Repudiation
	[Define how it will be possible to prove that a transaction has unequivocally been completed. Depending on the nature of the component this section may not be needed]

	Authentication
	[If required, define how any requester of the interface authenticates to ensure that only known requestors can use the interface]

	Authorisation
	[If required, define any authorisation required, this will be restrictions to different actors. For example to limit he data returned to different actors, or never return data to users who have not authenticated]

	Non-Repudiation
	[Define how it will be possible to prove that a transaction has unequivocally been completed. Depending on the nature of the component this section may not be needed]

	Recovery
	[In the event of an integration failing describe how the integration can be re-requested and resent]

	Performance
	[Define any performance requirements, this is how fast a response must be received]

	Capacity
	[Define how many requests of different types must be serviced in defined period of time]

	Availability
	[Define an appropriate availability requirements]

	Controls / Audit
	[Define any business controls and audit requirements and considerations for the component. This should include recording accesses by different types of Actors (human and inhuman) and how the component will support and report on any Business Controls which it may be supporting.]

	IT Strategy / Enterprise Architecture

	Enterprise Architecture Standards
	[Define any applicable standards to which the integration must conform. Standards are a form of requirement. Standards may arise from an organisations’ Enterprise Architecture, or from the delivery project itself.]

	Requirements

	Functional Requirements
	[Define which requirements this integration implements. This should be cross referenced with Functional Requirements documents.]

	Non Functional Requirements
	[Define any non functional requirements such as response times, availability, capacity (numbers of requests services in a defined period of time) which may affect the integration.]

	Security
	[Define any security requirements or considerations, for instance who may use the integration and how authorisation and authentication are achieved. How data payloads are secured, etc]

	Controls / Audit
	[Define any business controls and audit requirements and considerations for the integration. This should include recording accesses by different types of Actors (human and inhuman) and how the data will support and report on any Business Controls which it may be supporting.

	Architecture and Design

	Component Architecture
	[Define how the integration fits with the component architecture, which component is considered the trusted source of the data, which components can create, read, update, delete and data.]

	Data Architecture
	[Define how this integration fits into the data architecture.]

	Integration Architecture
	[Define how this integration fits with the integration architecture.]

	Infrastructure Architecture
	[Define any effect or dependency on the infrastructure architecture.]

	Development

	Implementation
	[Describe any other considerations for the development team during implementation.]

	Testing

	Requirements
	[Define how the integration addresses any testing requirements including how the integration should be tested for the following test scenarios:

· Unit

· System Integration

· User

· Performance

· Security

· Production Verification]

	Deployment

	Deployment Instructions
	[Define any deployment considerations. especially any one off integrations which occurs during deployment, for instance data migratios. This section may defer to later documentation.]

	Service Delivery / Service Management

	Service Delivery / Data Management
	[Define how the integration architecture meets any service delivery and service management requirements. Data recovery in disaster or failure scenarios must be covered.

	Data Management
	[Define how the integratione is managed over time. How the data is monitored for quality and consistency and how this is reported and corrected. Define the business owner of the data.
http://en.wikipedia.org/wiki/Data_management

	Decommission

	Decommission Considerations
	[Describe any considerations and requirements for the future decommission of the integration.]

	Project Management

	Scope
	[If required define the scope of the integration, however this is usually not required since the integration point description is a definition of scope.]

	Resources – Cost Estimate
	[If required provide a cost estimate needed to implement the integration. Be clear to state what is included and excluded from the estimate such as the development effort itself, documentation, testing, etc.]

	Resources - Effort Estimate
	[If required provide an estimate of the resources needed to implement the integration, usually in man hours. Be clear to state what is included and excluded from the estimate such as the detail design, development effort itself, documentation, testing, etc]

	Schedule
	[If required state any schedule implications, that is any task or time dependencies which may affect the implementation of the integration point.]

	Risks and Mitigations
	[State any risks associated with the integration point, and any risk mitigation plans to avoid the risk.]

	Issues
	[State any issues associated with the integration point and current in-flight actions which are attempting to resolve them.]

	Dependencies
	[State any dependencies which the integration has.]

	Assumptions
	[State any assumptions made in the architecture of the integration point.]

	Resources and Skills
	[State the resources and associated skills needed to implement the component.]

	Intellectual Capital
	[Define any existing intellectual capital which may be reused or accelerate the implementation of the integration point.]

	Linkage to other Architecture Work Products

	Architectural Decisions
	[List any relevant Architectural Decisions and how they affect the design of the integration point.]

	Architectural Risks and Mitigation
	[List any relevant Architectural Risks raised which are relevant to the integration point and how they may affect the integration point if the risks occur.]

	Change Cases
	[List any change cases and their consequence. Change cases are possible and probable changes which will be made at a later date.]

- End of Document –
[Example integration architecture overview diagram]

I will start off with this relatively simple example

This architecture shows an SAP system communicating to a number of other systems. Each rectangular box represents a component and each component is uniquely numbered for ease of reference both when talking about this diagram but also when you create other work products you can reference the component using this number. The arrows show the existence of a data flow between the systems, and again each data flow is uniquely numbered for ease of reference.

Level of Decomposition
Just a note here, when you create Architecture Overview Diagrams you will have to choose the level of decomposition shown in the diagram. Look at the SAP box for instance - SAP is made up of many components like the database, SAP GUI, SAP NetWeaver, SAP Portal, etc. For the purpose of this overview diagram is simpler to abstract SAP into one box although really is has many components of interest. I have chosen this level of decomposition for the specific purpose of this diagram. If you abstract components like this you should consider adding another diagram which decomposes these more complex components to a further level of detail down. Have a look in the example presentation with this post. I have a separate diagram just to describe the SAP stack and which SAP components are used. On these kinds of diagrams you should not need to decompose to too fine a level of detail. If you have classes, and operators you are at too low a level for this kind of diagram that is when you should switch to other diagramming techniques like UML.

Component Types (click to enlarge)

The different colours of the components do have a meaning and each box should be given a meaningful name.

The first box type in dark blue box is a component which is owned and is specifically part of your project scope (i.e. you own the deployment or change to this component), this maybe new or it could be a change to an existing component.

The second box type in grey is a component someone else owns, but no development is required at the other end of the interface to allow the transfer the data. This is often the case when you develop an interface which fits exactly the format which the other party is expecting without alteration, typically when integration already exists and this new system is simply replacing a direct copy of what was already there. Small configuration changes might be necessary at the other end to accept the data from your source but this is assumed to be trivial. The implication of no development is that the integration should be relatively straightforward particularly from a project management point of view since the dependency on the other party is not significant.

The third type in light blue is where the other party does need to change and develop something to either send or receive data which was never sent or received before, or an alteration to the integration method. The implication here is the dependency between your system and the other party is significant. Their implementation schedule will need to match your dates for system integration, user testing and production deployment and production cut over.

The last type in light blue with a red surround is a component which sits outside the firewall, all the other component types are assumed to be with your internal network. This is important because the security necessary to talk to external system is often much tighter than communicating with other systems on your internal network.

Arrow Notation (click to enlarge)

First of all the direction of the arrow is important. It shows the logical flow of the data.

The solid arrow is a direct flow of data. This is always automated, and alway system to system. The method of exchange is not explicitly described and further explanation will be required. If you look at the example deck the interface mechanism has a textual description and the method of transport. It could be any number of methods like ftp, MQ, JMS, REST, HTTP, SOAP, etc.

The dashed arrow is an indirect flow of data. This will require biomechanical automation (a human) to complete. Typical examples are uploading a spreadsheet or running and exporting a report which is then sent somewhere.

Lastly the red circle is used to show who is the initiating the transaction. The direction of the arrow shows the logical flow, but not who starts the transaction.

So in the first example the data is flowing from System A to B, but System B is the system which initiatives the data flow. This could be calling a service call or an ODBC connection to System A made by System B to retrieve the data.

The second arrow shows data flow from System A to system B, and it is System A which starts the transaction. A Message (MQ, JMS, etc) would be an example of this, as is a batch interface where System A creates the batch interface and sends it to System B.

Other Notation (click to enlarge)

These two boxes are used to uniquely number every single component and interface in the diagram. Diagrams may span several pages; uniqueness should be preserved across an entire architecture.

One improvement I will create to a colleague, Steve McKim, is when a component acts as a pass-thru, like MQ, or an ftp server, then label the boxes 6a, 6b, etc. This makes the diagram much easier to understand when the same data is flowing through multiple components.

Diving into the Example Diagram
Lets now take a couple of interfaces from the example diagrams and explain them, the first is generating a message from SAP and passing it to Websphere Message Broker

So you can see we have three components, and 2 interfaces. SAP generates a message and sends the message to MQ. MQ is simply a pass-through and automagically send this to Websphere Message Broker. You can see the use of the 6a/6b notation on the interfacing number. The data is unchanged by MQ so it makes sense to show that the data from SAP is being moved to WMB unaltered. All of the arrows are solid so all of this is automated. Since this is a messaging model, SAP initiates the data flow to MQ, and MQ in turn initiates the data push to WMB. For simplicity I have left off what WMB does then. WMB is IBMs heavyweight messaging solution (ESB) so you can safely assume this does all sorts of data transformations, logging, and connections to all sorts of systems via any number of protocols.

The diagram itself is not sufficient to explain everything to the inquiring mind. Why SAP is generating this message is unexplained, how does SAP connect to MQ? SAP does not have native MQ connectivity nor does it generate MQ headers automatically so how is this done? All of this kind of thing needs to be covered in the detail documentation. In IBM and ITIL language this is a Component Model this is somewhat akin to good old internal and external design documents. I would also advocate proving a short explanation with the diagram and I have provided this in my full example.

The second example is a less clean indirect integration.

In this example a spreadsheet is created or updated somehow from SAP. The use of the dashed line indicates this is only partially automated. In this case a user is exporting a report into a spreadsheet possibly onto a server (more than likely their laptop/PC) and then using that spreadsheet as the data source for a Lotus Notes database. They are probably using an Agent in the Lotus Notes database to find and import the data.

Just the same as the first example, the diagram does not explain all the detail, but it does communicate the general data flow and you can make reasonable assumption about what is happening. Further detail is needed to fully explain the flow, what is happening and why. The detail must also cover other considerations such as how the spreadsheet is secured if it contains confidential information.

And Finally…
Remember that these diagrams are a communication method. In any good communication you know your audience and you tailor your communication to them. This notation is very good for communication with other architects and developers at a project level but also at Architecture Review Boards. I have also used these with auditors who often have technical leanings. This format probably isnt what you want to show an executive [image: image8.png]

I said it a few times already these diagrams are useful in their own right but you will need further detail documentation to explain more about what is happening and why, particularly to developers. A crucial piece of the notation is the unique numbering format which allows you to tie any given component or interface shown in these diagrams to the detail documentation.

	
	
	Integration Architecture Work Product.Doc

